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Abstract. We construct the analogue of Schwartzman’s asymptotic cycle for Brownian
motion on a Riemannian manifold, and we prove that it vanishes in real homology. We
generalize Itô’s construction of parallel transport along a Brownian path in a Riemannian
manifold to a principal bundle with connection, and define the holonomy for Brownian
motion and its expected value. We also define and prove the existence of the average
linking number of the asymptotic cycle associated to Brownian motion in any homology
3-sphere in analogy with V. I. Arnold’s definition of asymptotic linking number for flows.

1. Introduction

The purpose of this note is to construct the homological representative of a random
path for any compact Riemannian manifold. We use the idea of Schwartzman [Sc], to
construct the asymptotic homological object that corresponds to a random Brownian
path thought of as a diffuse cycle. The construction is based on an approximation to
Brownian motion by piecewise smooth curves, following Itô [I]. Of course, there are
other possible ways to do this. For example, Pinsky [P] constructs Brownian motion by
isotropic transport process, and this construction also gives a nice way to approximate
Brownian motion by a piecewise smooth path. To understand better the interpretation
of the asymptotic cycle associated with Brownian motion in the first homology group
with real coefficients, we review the Eilenberg-Bruschlinsky homology theory as in [Sc].
Using this together with some results of harmonic maps, we prove that the asymptotic
cycle associated with Brownian motion is trivial in homology, and compare it with a
result of Elworthy for Brownian motion on a manifold of bounded negative curvature
with ends. An interesting example is provided [VV1], where we compare it with results
in harmonic maps for hyperbolic manifolds.

Additionally, given a principal bundle with fibre a compact Lie group on a Riemannian
manifold, we construct the parallel transport along a random path, as in Itô [I], where
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he constructs it for the parallel transport of the Levi-Civita connection of a Riemannian
manifold.

In the last section we extend the definition of V. I. Arnold ([A] and [AK]) of asymptotic
linking number to the orbits of two Brownian paths on a Riemannian homology 3-sphere.

We remark that all the constructions depend on the choice of a Riemannian metric
on the manifold, since the construction of Brownian motion depends on the latter.

For more geometrical properties of Brownian motion on a Riemannian manifold, and as
an introduction to the topic, we refer to the beautiful survey by Kendall [K] on stochastic
differential geometry.

Finally we want to thank Luis Gorostiza for helpful suggestions and references.

2. Brownian motion on a Riemannian manifold (a review).

The existence of Brownian motion is equivalent to the existence of Wiener measure
on the space of continuous paths. We review the properties of Wiener measure. We first
describe the Wiener measure on RN . We will denote the Wiener measure associated to
the Brownian motion starting at 0 ∈ RN by W0. It is a probability measure on

C0(RN ) = {α : I −→ RN , α(0) = 0, α continuous},

(where I is an interval starting at 0), constructed in the following way.
Let ∆ be the Laplace operator on RN , then the heat operator L = ∆− ∂/∂t. It has a

fundamental solution h(x, y, t) = ht(x, y) with the following properties:

(1) h : (RN × RN −Diag)× R(≥0) 7→ R(≥0) is smooth.
(2) h(x, y, t) = h(y, x, t).
(3) Lxh = 0 = Lyh where Lx is L operating on the first variable of L.
(4) The Chapman-Kolmogoroff identity

ht+s(x, y) =
∫

RN
hs(x, z)ht(z, y)dz.

(5)
∫

RN ht(x, y)dy = 1 for all x ∈ RN and t > 0.

The Borel σ-algebra is generated by the sets ρ−1
τ (B) ⊂ C0(RN ) where τ = (t1, . . . , tn)

with 0 < t1 < · · · < tn < 1, and ρτ : C0(RN ) 7→ RN × · · · × RN (n-copies of RN ) is
the evaluation map ρτ (α) = (α(t1), . . . α(tn)), and B is a Borel subset of RN × · · · ×RN

(n-times, where n is an arbitrarily changing integer). We have

W0(ρ−1
τ (B)) =

∫

B
ht1(0, x1)ht2−t1(x1, x2) · · ·htn−tn−1(xn−1, xn)dx1dx2 · · · dxn

It is known that W0 determines a Borel measure on C0(RN ) with W0(C0(RN )) = 1, (a
construction esentially due to Wiener, see [EE1] or [EE2] and the references therein)

If (M, g) is a compact Riemannian manifold, we can construct Brownian motion on
M by ”rolling” M along a Brownian path in its tangent space. This construction is
formalized below. We remark that the existence of Brownian motion is equivalent to the
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existence of the Wiener measure on the space of continuous paths with a fixed starting
point Cp = {α : I 7→ M, α(0) = p, α continous}, and I is an interval starting at 0 (in
all our constructions below the interval I will be [0,∞)).

Assume that we have a compact Riemannian manifold (M, g), and we have Brownian
motion Bp(t) starting at a point p. Following Itô [I], this is constructed by solving a
stochastic differential equation. We assume as given Brownian motion β(t) on Rn starting
at 0, identify the tangent space Tp(M) isometrically with Rn using the Riemannian metric
gp on Tp(M) and the usual Euclidean metric on Rn. Then we obtain the Brownian motion
on the manifold M starting at a point p by the development map at the point. Formally,
one solves a stochastic differential equation as follows (see [I]). In local coordinates on
M , we denote by gij the components of the Riemannian tensor, gikgkj = δi

j and Γk
ij the

Christoffel symbols of the Riemannian connection. Let

∆ =
1
2
gij∇i∇j

=
1
2
gij ∂2

∂xi∂xj −
1
2
gijΓk

ij
∂

∂xk

be the Laplace-Beltrami operator.
In the same coordinates, we define σi

k and mk by

∑

k

σi
kσj

k = gij

mk = −1
2
gijΓk

ij

and solve the stochastic differential equation:

dBi(t) = σi
k(B(t))dβk(t) + mi(B(t))dt

with Bi(0) = p. We obtain the paths of Brownian motion starting at p ∈ M . (See the
nice intuitive explanation in [S] or the more formal one in [K]).

Let C = {α : [0,∞) −→ M, α continuous}. Let Π : C −→ M be defined by Π(α) =
α(0). Then, as shown by [EE1], C is a Frechet manifold and Π is a differentiable locally
trivial fibration with fibre Cp = Π−1(p), for each p ∈ M .

Let us define the measure W on C as the measure whose restriction to a local trivial-
ization U × Cp ' Π−1(U) is the volume measure of M restricted to the open set U ⊂ M
times Wp. More precisely, if U ∈ C(M) is a Borel subset, we have

W (U) =
∫

M

Wp[U ∩ Cp(M)]dvg(p),

where dvg denotes the volume measure on M induced by the Riemannian metric g. In
other words, W is a measure on C which desintegrates to h1dvg, where again we have
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that ht(x, y) : M ×M × R+ −→ R+ is the fundamental solution of the heat equation.
The measure W is the Wiener measure on C.

If we define the time shift semigroup Fs : C −→ C, s ≥ 0, as Fs(α)(t) = α(s + t), then
this semigroup preserves the measure W . Therefore the triple (C,W, Fs) is a measure
preserving non reversible dynamical system.

In this paper, we will follow Ito’s construction [I]. We review the way he approximates
the Brownian path by a piecewise smooth curve. Given a Brownian path B(t) on M ,
consider a partition P = {0 = t0, t1, t2, . . . , tn = T} of the interval [0, T ]. Join each pair
of points B(ti), B(ti+1) with the unique geodesic path joining these two points, obtaining
a piecewise smooth curve which we denote by B(t,P). Itô shows that as the mesh of the
partition tends to zero, the piecewise curve obtained tends to the given Brownian path.
We will use several times below this approximation. We will also consider from now on,
Brownian motion on the interval [0,∞), even if in the constructions below, we only use
for each path B(t), the trajectory up to a finite time T

2.1 Remark. Since we will need an approximation of the Brownian curve by piecewise
smooth curves, it is also instructive to describe Pinsky’s method [P] to obtain a random
path on a manifold using the so called isotropic transport process. The idea is as follows:
we give a partition P = {0 = t0, t1, . . . , tn = T} of the interval [0, T ] (n arbitrary).
With initial point γ(0), choose successively an arbitrary (random) direction in the unit
sphere of each Tγ(ti)M , with the uniform distribution in the unit sphere defined using
the Riemannian metric in the corresponding tangent space. Then consider the geodesic
path γ : [ti, ti+1] → M starting at the base point γ(ti) in the direction of the unit
tangent vector chosen. Pinsky proves that when the manifold M is (i) compact or (ii) it
has bounded negative curvature, the union of all these geodesics will define a piecewise
smooth curve that converges to a random curve as the size of the partition P tends to
zero at an appropriate rate. This is another way to construct Brownian motion on M .

3. The asymptotic cycle associated to Brownian motion

In this section we use the existence of Brownian motion on a Riemannian manifold to
construct the homological cycle associated to it, and then we will give some applications
to Riemannian geometry and harmonic maps.

We will assume we have chosen a priori, for every pair of points q1 and q2 of M , a
collection of smooth short curves {γq1,q2} of uniformly bounded length joining the points.
Such a collection of curves exists, and depends in a measurable way of q1 and q2. (See
Arnold and Khesin [AK], page 145. We give a more precise definition of a collection of
short curves in section 4 below). Our construction will be independent of the choice of
this collection of short curves.

Let us define the following map:

[ · ] : Cp × R+ → H1(M,R)

by
(B, T ) 7→ [Γ(B, T )],
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where Γ(B, T ) is the closed curve obtained by joining the end points of a Brownian
trajectory B(t) : [0, T ] → M with the curve γB(T ),B(0) of our collection of short curves.
This defines a cycle [Γ(B, T )] in homology, which is the value of our map. To see its
meaning, we use the approximation of the random path and Poincaré duality as follows.
Given a partition P of the interval [0, T ], we denote by B(T,P) the piecewise smooth
curve as constructed above that approximates B(t). By joining the endpoints in exactly
the same way with γB(T ),B(0), we get a cycle that depends on the random path B(t),
the length of the interval T , and the partition P . We denote it by ΓP(B, T ). This is a
piecewise smooth cycle, over which we can integrate a 1-form w:

∫

ΓP(B,T )

w .

Then the following limit is well defined
∫

Γ(B,T )

w = lim
max|∆t|→0

∫

ΓP(B,T )

w .

Poincaré duality permits us to interpret the cycle [Γ(B, T )] as follows. We represent
[Γ(B, T )] by the linear map AT : H1(M,R) → R given by:

AT ([w]) =
∫

Γ(B,T )

w ∈ R.

Now consider the time shift map Fs acting in the image of our map [ · ], which is just
a translation by time s on our Brownian path. For s ≥ 0, it acts as follows. We will first
describe it for the piecewise smooth approximation. Given the path B(t), consider the
curve given by the composition Fs(B(t)) = B(s+t). Now, construct in the same way, the
piecewise smooth approximation to this new random path (which starts in B(s)), and
the cycle (Fs)∗[ΓP(B, T )] as the cycle obtained with the piecewise approximation of the
curve Fs ·B : I 7→ M , closed with a curve γB(T+s),B(s) from our fixed collection of short
curves. Of course the map behaves well after taking limits, giving a time translation on
the cycle constructed above, (Fs)∗[Γ(B, T )].

3.1 Lemma. The map [ · ] is measurable, and subadditive with respect to Fs.

Proof. Suppose we denote by P a partition of the interval [0, T + S] such that both S
and T are on the partition. Since we will need to consider the cycle ΓP(B, T +S) in two
pieces, first going to time S, then from S to time T +S. Let us denote by ΓP(B, S), and
consider the curve B under the shift FS by S units, denoted by BFS . Then it defines a
cycle ΓP(BFS , T ). (To simplify notation we are using the same notation P for the part
of the partition on each of the corresponding subintervals). We have:

∫

ΓP(B,S+T )

w =
∫

ΓP(B,S)

w +
∫

ΓP(BFS ,T )

w −
∫

γB(S),B(0)

w
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Consequently,
∥

∥

∥

∥

∥

∫

ΓP(B,S+T )
w

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∫

ΓP(B,S)
w

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∫

ΓP(BFS ,T )
w

∥

∥

∥

∥

∥

+ c

Since the curves γp,q are uniformly bounded, c is a constant, depending only on the
1-form w. Now take limits as the mesh of the partition P tends to zero. We obtain
an analogue inequality, omitting P in the formulae. This is the subadditive property.
Measurability is a direct consequence of the properties of Brownian motion.

Now we construct the Schwartzman cycle associated with a random path. Given
B ∈ C, consider the limits

Γ(B) = lim
T→∞

1
T

[Γ(B, T )]

A = lim
T→∞

1
T

AT .

3.2 Lemma. These limits exist and define the same homology class. Furthermore, this
homology class is {Fs} invariant, i.e.

(Fs)∗[Γ(B, T )] = [Γ(B, T )].

Proof. We need to show, by Poincaré duality, that the map A is well defined as a limit.
But this is a consequence of the fact that the map [ · ] is measurable and subadditive as
proved in the previous lemma. On the other side, Poincaré duality gives an equivalence
for each time T of the two cycles: [Γ(B, T )] and AT . Then the lemma follows in the
same way as the proof of the Subadditive Ergodic Theorem (Thm. 10.1 in [W]).

3.3 Definition. The cycle Γ(B) (or its equivalent A) will be called the random as-
ymptotic cycle. The Schwartzman asymptotic cycle associated with Brownian motion is
defined as

E[Γ] =
∫

C

Γ(α)dW (α),

where W denotes Wiener measure on the space of continuous paths in M .

Schwartzman [Sc] gives another way to understand the asymptotic cycle in terms of
the Eilenberg-Bruschlinsky homology theory, that we will use for the cycle associated to
Brownian movement.

We will consider the circle S1 = {z ∈ C : |z| = 1} and the group of continuous map-
pings C(M, S1) with pointwise multiplication. We denote by R(M) the closed subgroup
of C(M,S1) consisting of

R(M) = {φ ∈ C(M, S1) | ∃α : M → R with φ(x) = exp(2πiα(x))}.
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3.4 Theorem (Eilenberg-Bruschlinsky [Sc]). C(M,S1)/R(M) is algebraically iso-
morphic to H1(M,Z). The isomorphism is given explicitly as follows. Let φ ∈ C(M, S1)
and consider for any cycle C the restriction of φ to the cycle C. This is a map from the
cycle to S1, and the degree is well defined. Then the pairing:

C(M, S1)/R(M)×H1(M,Z) −→ Z

(φ,C) 7→ deg(φ|C)

is a duality pairing.

In the case of the Asymptotic cycle defined by a Brownian path Γ(B, T ) we can always
take the limit

φ 7→ lim
T→∞

1
T

[deg(φ|Γ(B,T )]

defining an element of H1(M,R) by duality.

3.5 Theorem. With probability one, the random asymptotic cycle associated with Brown-
ian motion in a compact manifold is trivial in homology. Consequently, the Schwartzman
asymptotic cycle is also zero

Proof. Note that as a special case of the Hodge theorem, a map φ : M → S1 can always be
deformed to a harmonic map (see [EL1], sect. (7.1)). In fact, it is a harmonic morphism.
Recall that a harmonic morphism is a map φ that is harmonic and horizontally conformal,
that is, at any point p ∈ M at which dφp 6= 0, the restriction of dφp to the orthogonal
complement of Ker(dφp) in Tp(M) is conformal and surjective. In our case, the image
is of dimension one therefore, it is immediately conformal.

Now, we know also that since φ is a harmonic morphism, the image of Brownian motion
on M is Brownian motion on S1 up to a random bounded time change. ([EL2] Pag. 395,
sect. 2.44). The collection of closing curves goes to the collection of closing curves, so
that φ|Γ(B,T ) is a cycle in S1 corresponding to Brownian motion. That is, the image of
the cycle associated to a Brownian path is a cycle corresponding to a Brownian path in
S1. But with probability one, Brownian motion in S1 is recurrent, and its asymptotic
cycle is zero.

To see this, recall that Brownian motion on a manifold is constructed from Brownian
motion in the tangent space and then by developing the manifold on the tangent space
along the Brownian path, we obtain the Brownian path on the manifold. Namely, if one
takes a random Brownian path on S1, then it is induced by a random path on R. But
Brownian motion on R is recurrent, and this means that with probability one, given a
random continuous path β(t) in R, there is a sequence of times t1, t2, . . . , tn, . . . such
that tn → ∞, and β(tn) = β(0). So that all the curves in S1 defined by closing the
trajectory at the points tn are homotopic to zero, hence also zero in homology. This
gives a subsequence of cycles that converges to zero in homology, but we have proved
that the cycle converges, so it must converge to the trivial cycle.

We have the following interesting application.
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We define the space of Ends of a manifold M , End(M), as the inverse limit

End(M) = lim←−{CK : K ⊂ M}

where CK denotes the set of connected components of M \K, and we have the partial
order given by inclusion.

3.6 Corollary. If M is a compact Riemannian manifold that admits an infinite cyclic
covering ˜M , then the lift of Brownian motion from M to ˜M cannot escape through any
of the two ends of ˜M .

We recall that Elworthy and Rosenberg proved the following.

3.7 Theorem (Elworthy [ER]). If M is a Riemannian manifold such that its sec-
tional curvature is bounded above and below by negative constants, and its Ricci curvature
Ricc(M) is bounded below by C > −λ0 were λ0 is the first eigenvalue of the Laplacian.
Then M has at most one end through which Brownian motion can escape to infinity with
positive probability.

4. An example of hyperbolic manifolds with ends

We will take as model for the hyperbolic spaces Hn, the disc model Interior (Dn) ⊂ Rn

with the Poincaré metric. The sphere at infinity, Sn−1 = ∂Dn, will be denoted by Sn−1
∞ .

The hyperbolic metric of Hn will be denoted by hn. We construct a harmonic map
h : H2 → H3 (H2 and H3 with their corresponding hyperbolic metrics) such that:

(1) The function h extends to the circle at infinity as a continuous function with
values in D3 and we obtain the continuous function g : S1

∞ = ∂H2 → ∂H3 = S2
∞

(2) The function g is a Peano curve i.e. g(S1
∞) = S2

∞.
Let Σ := Σg be a compact and orientable surface of genus g ≥ 2. Let f : Σ → Σ

be a diffeomorphism which is isotopic to a pseudo-Anosov diffeomorphism. Then, by a
celebrated theorem by Thurston, the mapping torus is a hyperbolic 3-manifold. Namely,
the 3-manifold obtained from Σ × R by taking the orbit space by the proper action of
the diffeomorphism

F : Σ× R→ Σ× R, (σ, t) 7→ (f(σ), t + 1)

is a compact hyperbolic 3-manifold. We will denote this manifold by M := Mf and
its hyperbolic metric by m. The manifold M fibres over the circle π : M → S1 with
fibre Σ and monodromy f . The fundamental group of M is a semidirect product of the
fundamental group of Σ and the integers Z, i.e. there exists an exact sequence:

1 → G → π1(M) → Z→ 0,

where G is isomorphic to π1(Σ). Therefore, the fundamental group of Σ can be considered
as a normal subgroup of the fundamental group of M . We have that Σ × R has the
structure of a hyperbolic manifold with two ends, which is an infinite cyclic covering of
the compact manifold M .
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Let p : H3 → M the universal covering projection which is taken as a local isometry
of Riemannian manifolds (H3, h3) to (M, m).

Let Iso+H3 ∼= PSL(2,C) be the group of orientation-preserving isometries of H3, then,
M can be described as the quotient H3/Γ, where Γ is a discrete subgroup of PSL(2,C),
Γ ⊂ Iso+H3, and Γ is isomorphic to π1(M).

The 2-dimensional foliation F in M , given by the fibres of π lifts to a 2-dimensional
foliation ˜F in H3. Since each fibre of π injects its fundamental group into the fundamental
group of M we have that the leaves of foliation ˜F are diffeomorphic to Interior (D2) (or
to R2). Since the foliation F comes from a fibration onto the circle, we obtain that ˜F is
a product fibration, i.e. there exists a diffeomorphism φ : Interior (D2) × R → H3 such
that the leaves of ˜F are the images of Interior (D2)× {t}, t ∈ R.

A theorem by Thurston and Cannon (unpublished) is the following:

4.1 Theorem (Cannon, Thurston [CT]). Let ψ : Σ → M be a continuous map
such that ψ induces an isomorphism from the fundamental group of Σ onto G ⊂ Γ. Let
Π : H2 → Σ be the universal covering projection of Σ. Let ˜ψ : H2 → H3 be the lifting of
ψ so that we have the following commutative diagram:

H2 Π−−−−→ Σ

eψ



y





y
ψ

H3 p−−−−→ M

Then,

(1) ˜ψ extends to the circle at infinity as a continuous map from D2 to D3.
(2) The restriction of this map to the circle at infinity is a map

g : S1
∞ = ∂H2 → ∂H3 = S2

∞

which is a Peano curve.
(3) This Peano curve is geometrical, i.e. only depends on the choice of the isomor-

phism from π1(Σ) to G.
(4) The map g is equivariant under the actions of the fundamental groups of Σ and

M on H2 and H3, respectively, under covering transformations.

The theorem of Cannon and Thurston implies that although the foliation ˜F is a
product foliation, it is embedded in H3 by the function φ above in a very twisted way as
the leaves approach the boundary of H3. In fact we have the following corollary to the
theorem of Cannon and Thurston:

4.2 Corollary. The function φ : Interior (D2) × R → H3 extends to a continuous
function ̂φ : D2 × R→ D3. Furthermore:

(1) The restriction of ̂φ to S1
∞ × {t} is a Peano curve for each t ∈ R.

(2) For each t, s ∈ R and x ∈ S1
∞ we have ̂φ(x, t) = ̂φ(x, s).

(3) ̂φ(·, t) is an equivariant Peano curve.
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Let Tg be the Teichmüller space of hyperbolic metrics on Σ modulo diffeomorphisms
isotopic to the identity. A point in Tg will be, therefore, a choice of a hyperbolic metric
µ in Σ and a marking of the fundamental group of Σ. We can think of the marking as
an explicit isomorphism α : π1(Σ) → G from π1(Σ) onto G. The elements of Tg will be
denoted by (µ, α), where µ is a hyperbolic metric. Let (µ, α) ∈ Tg. Since both M and Σ
are Eilenberg-MacLane spaces of type K(π, 1), then for each α there exists a homotopy
class of maps from Σ into M .

Now we recall the following theorem of Eells and Sampson:

4.3 Theorem (Eells-Sampson [EL2]). Let (M, m) and (N, n) be compact Riemannian
manifolds with metrics m and n, respectively. Suppose that (N, n) is of strictly negative
sectional curvature. Then, for each homotopy class of maps from M to N there exists
one and only one harmonic map in this homotopy class.

From all of the above we have the following proposition proved by Pereira do Vale and
Verjovsky [VV1]:

4.4 Proposition ([VV1]). Let α : π1(Σ) → G be an isomorphism. Let µ be a hyperbolic
metric on Σ. Then there exists one and only one harmonic map h : (Σ, µ) → (M, m)
such that if h̃ : H2 → H3 is the lifting that makes the following diagram commutative

H2 Π−−−−→ Σ

h̃





y





yh

H3 p−−−−→ M

Then, h̃ is a harmonic and equivariant map from (H2, h2) into (H3, h3) which admits
a continuous extension as a map from D2 onto D3 which at infinity has an equivariant
Peano curve g : S1

∞ = ∂H2 → ∂H3 = S2
∞ as boundary value at infinity.

The standard theorems of harmonic maps from compact Riemannian surfaces into
compact Riemannian 3-manifolds imply that the map h is actually an embedding from
Σ into M . Also, h depends real analytically on the point in Teichmüler space [EL2].
Using this real analytic dependence, it is possible to introduce real analytic coordinates
in Teichmüller space and, in fact, using the second fundamental form of the image of Σ
in M , it is possible to introduce complex coordinates as well (as in the Bers theory).

If ˜M is the covering manifold of M which fibres over the circle with fibre the non-
compact surface of genus zero and a Cantor set of ends, in other words, homeomorphic
to S2 \ {Cantor set}, that is, the surface obtained from infinitely many pairs of pants
according to the infinite binary tree, then, h lifts to a harmonic map ĥ : H2 → ˜M which
accumulates to the ends of ˜M . In this fashion we obtain examples of escaping harmonic
maps.
4.5 Remark. Compare this construction with the following. We use the same notation
as in the previous example. Furthermore, denote by D2 = Interior(D2) = {(x, y)|x2 +
y2 < 1} contained in D3 = Interior(D3) = {(x, y, z)|x2+y2+z3 < 1} with the inclusion
(x, y) 7→ (x, y, 0). With this convention, D2 ⊂ D3 will be considered as hyperbolic
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metric spaces with the Poincaré metric. Let G ⊂ Iso+(D2) be a Kleinian group. For
instance, G = π(Σ), the fundamental group of a compact Riemann surface Σ of genus
g ≥ 2. Its fundamental region is a 4g-sided hyperbolic polygon P4g in D2. We now
extend the action of G to D3 in the standard way. A fundamental region P for this
action is homeomorphic to P4g ×R, but the transversal part to the polygon is formed by
orthogonal hyperbolic geodesics to P4g × {0} in D3. The intersection of the closure P̄
of P with the boundary S2 = ∂(D3) gives two copies of a 4g sided polygon on the top
and bottom hemispheres of S2. Then the quotient M = H3/G is a hyperbolic 3-manifold
diffeomorphic to Σ × R in a trivial way. Notice that this construction an that of the
previous section, endow Σ×R with two different hyperbolic metric structures, obtained
from two non conjugate embeddings of G = π(Σ) into Iso+(D2). Furthermore, the
hyperbolic manifold M constructed in this paragraph is not the infinite cyclic covering
of a hyperbolic compact 3-manifold. Brownian motion in this non compact manifold M
is dissipative, since it is dissipative in the hyperbolic disc D3, and it follows that it is
also dissipative in the fundamental region P = P4g ×R that projects to M = Σ×R. On
P4g × R we have the isometric involution (x, y, z) 7→ (x, y,−z), consequently Brownian
motion will have probability one half to escape to one end and one half to escape to the
other end, implying that the same holds on M = Σ× R.

5. Lifting to Holonomy

In this section we review the construction of parallel transport along a Brownian path
for a principal bundle P → M with structure group a compact Lie group G. We will
follow closely Itô’s construction [I] of parallel transport for the Riemannian connection
on M .

Assume we have a principal bundle P → M with structure group G a compact con-
nected Lie group. We suppose we have a connection, represented by a Lie algebra valued
1-form A ∈ A1(M, g), the 1-forms on P with values in the Lie algebra g of G. Given any
closed, C1 curve γ : [0, T ] 7→ M on M starting and ending at a point p ∈ M , we have
the holonomy or parallel transport along γ with respect to the connection A given by
the time ordered (or path ordered) exponential integral as:

P exp
∫

γ
A =

I +
∫

0≤s≤T

A(γ(s))γ′(s)ds +
∫∫

0≤s1≤s2≤T

A(γ(s1))A(γ(s2))γ′(s2)γ′(s1)ds2ds1 + · · ·

We observe that the ordering is important because in general the evaluation of the con-
nection form at different places of the curve give matrices that do not commute in the
multiple integrands, so we must take an ordering of the multiplications of the connection
forms evaluated under the multiple integrals, and that causes the factorial constants to
disappear (see Nelson [N] pp. 15-16). In the case of an abelian Lie group it is not neces-
sary to specify an ordering and the path ordered exponential is an honest exponential.

We follow Itô’s construction closely. Consider a Brownian trajectory B(t). For each
time T , we use the collection of closing curves to obtain a closed cycle as above. Again,
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with a partition P of the interval [0, T ], we approximate the closed cycle by a piecewise
smooth closed curve, obtaining the cycle ΓP(B, T ) as in the previous section. Given any
connection on the principal bundle, it is possible to construct the holonomy along this
cycle.

5.1 Theorem. With the data as in the above paragraph, one can construct the holonomy
along the asymptotic cycle defined by Brownian motion. We denote it by HolA(B). It is
a measurable function HolA : Cp −→ G.

Proof. The proof is the same as in Itô [I], except that we now use any connection on a
principal bundle, instead of the Riemannian connection. Another way to prove it is as
follows. We need to take the time ordered exponential integral of the connection form
A along the cycle, so we use the approximations of the asymptotic cycle Γ(B) by the
piecewise smooth cycle ΓP(B, T ) as described above. Now consider the path ordered
exponential integral of the connection form A over the piecewise smooth cycle,

Pexp
∫

ΓP(B,T )

A.

Each term of the path ordered exponential integral can be uniformly bounded by a bound
of the value of the connection form on the compact manifold M . Dividing the cycle by
T , we get:

Pexp
∫

1
T ΓP(B,T )

A

where this is interpreted as dividing the kth term of the series of integrals written above
by 1/T k (counting k from 0).

Take the limit as the mesh of P goes to zero, and the limit as T →∞

lim
T→∞

(

lim
mesh(P)→0

Pexp
∫

1
T ΓP(B,T )

A

)

.

The limits exists for each summand in the expression of the path ordered exponential
integral with probability one in C, by the lemmas of the previous section. Note that we
need the subadditivity of the cycles (in the argument T ), implying that each summand
of the path ordered exponential defines a subadditive function in T also. Since the
convergence of the series is uniform, this proves the theorem. It is obvious that this limit
coincides with the limit of the parallel transport on the closed cycles as considered in [I].

We recall that the Wilson loop associated to a closed curve γ in M , is the trace of
the holonomy determined by the curve, Trρ(HolA(γ)), where the trace Trρ depends on
a representation ρ of the structure group G of the principal bundle. It is independent of
a choice of base point. Then we have:

5.2 Corollary. For a Brownian trajectory on a compact Riemannian manifold, the
asymptotic Wilson loop for Brownian paths Trρ(HolA(B)), is well defined.

5.3 Remarks
(1) We believe that this concept might be useful in Quantum Gravity.
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(2) We note that J. Eells has given a construction of Brownian motion on the fun-
damental group of a Riemannian manifold and as extension, a construction of
Brownian motion in the holonomy group corresponding to the Riemannian con-
nection [E].

6. The asymptotic linking number

V. I. Arnold [A] defined the asymptotic linking number of the asymptotic cycle asso-
ciated to a flow of a homologically trivial vector field on a compact, simply connected
three manifold M . We will prove in this section one can also define the linking number
of two Brownian paths.

We follow the paper by V. I. Arnold [A] for the following construction. We assume
from now on that we have a Riemannian homology 3-sphere M3. For instance, the
standard three sphere S3 or the Brieskorn manifold Mp,q,r defined as the intersection
H ∩ S5 of the complex hypersurface

H =
{

(z1, z2, z3)| zp
1 + zq

2 + zr
3 = 0; p, q, r coprime, and

1
p

+
1
q

+
1
r

< 1
}

with the unit 5-sphere S5. Milnor and Dolgachev independently, have shown that Mp,q,r

is a homogeneous space ˜SL(2,R)/Γ, where Γ is a discrete, cocompact subgroup of the
universal covering of SL(2,R) with its natural homogeneous Riemannian metric (see [M],
[D]).

Let σ be a 1-cycle. Now, by a collection of short curves {γq1,q2} in M3 we will mean
a set of smooth curves joining q1 with q2 such that

(1) they have uniformly bounded length with respect to the metric of M3, and
(2) they do not intersect the cycle σ.
This collection depends in a measurable way on q1 and q2, and even piecewise smoothly

(we could choose, for instance, a minimizing geodesic joining each pair q1 with q2, see
[AK] pag. 145 or for more details, see also the paper by T. Vogel [V], where he shows
that the probability they will intersect a given cycle σ is zero).

Recall that if we have two non intersecting closed curves σ1 and σ2 on M3 . Then
the linking number L(σ1, σ2) is defined as the oriented intersection number of σ1 with a
2-cycle whose boundary is precisely σ2.

6.1 Lemma. Suppose given the asymptotic Brownian cycle Γ(B) associated with a
Brownian curve B. Then the linking number L(Γ(B), σ) is well defined and is inde-
pendent of the collection {γq1,q2} .

Proof. Given a time T and a partition P of the interval [0, T ], consider the approximating
cycle ΓP(B, T ). The probability that the path B(t) crosses the cycle σ up to time T is
zero, because the cycle is a set of Borel measure zero in M3. So with probability one in
C, the function L(ΓP(B, T ), σ) is well defined, it is measurable and subadditive in T . So
the limit

lim
T→∞

1
T

(

lim
meshP→0

L(ΓP(B, T ), σ)
)
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exists. The independence of the limit on the collection of short curves follows precisely by
the fact they have uniformly bounded length, and then, their contribution to the linking
number tends to zero (see [A]).

With this we can construct the Linking number of two Brownian paths in the following
way. Given B1 and B2 two random paths on M3, by the construction above, we can con-
sider for each time T and a partition P of [0, T ], the linking number L(ΓP(B1, T ), Γ(B2)).

Recall that we defined the time shift Fs of the cycle constructed from Brownian motion
(in section 2), giving the cycle associated to Fs(B(t)) = B(t + s) as (Fs)∗[Γ(B)].

Then the same argument as in Lemma 2.1 gives:

6.2 Lemma. With probability one in C with respect to the Wiener measure, the linking
number L(ΓP(B1, T ), Γ(B2)) is a measurable and subadditive function on T and the limit

lim
T→∞

1
T

(

lim
meshP→0

L(ΓP(B1, T ),Γ(B2))
)

exists.

In a similar way, we also have:

6.3 Lemma. The asymptotic linking number L(Γ(B1), Γ(B2)) is invariant under time
shift acting on either B1 or B2, namely,

L(Γ(Fs1(B1)), Γ(Fs2(B2))) = L(Γ(B1), Γ(B2))

for any s1, s2 ∈ [0,∞).

Proof. As in previous arguments, when taking the limit as T → ∞, the path from 0 to
si (i = 1 or 2) does not contribute to the linking number, namely, the contribution to the
limit (as well as the contribution of the short curves γq1,q2) is zero after dividing by T
and taking the limit.

This implies the following.

6.4 Theorem. On a Riemannian homology 3-sphere, given two random curves B1 and
B2, the linking number L(Γ(B1), Γ(B2)) exists almost always. This number is called
the asymptotic linking number of the Brownian motion. Also the following average
exists: ∫

C×C
L(Γ(B1), Γ(B2))dWdW

and it is called the average asymptotic linking number of the Brownian motion.

Since Brownian motion, and consequently all the constructions we have done, depend
on the choice of the Riemannian metric g on M , we will denote by

L(g) =
∫

C×C
L(Γ(B1), Γ(B2))dWdW.
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6.5 Theorem. The number L = infg L(g), where the infimum is taken over all Rie-
mannian metrics on M , is a differentiable invariant and hence a topological invariant of
the homology three sphere M .

6.6 Remarks.

(1) We do not know how to compute L(Γ(B1),Γ(B2)) for Brownian motion on the
standard 3-sphere nor on a Brieskorn manifold Mp,q,r, although we could compute
the average asymptotic linking number for a volume preserving flow in [VV2].

(2) We do not know if the number L might be always zero, or how it relates to other
invariants of homology three spheres.

(3) Since the linking number, as invented by Gauss, is related to Ampère’s law, our
random asymptotic linking number is related to Maxwell’s theory of electromag-
netism.
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E-mail address: vila@cimat.mx




